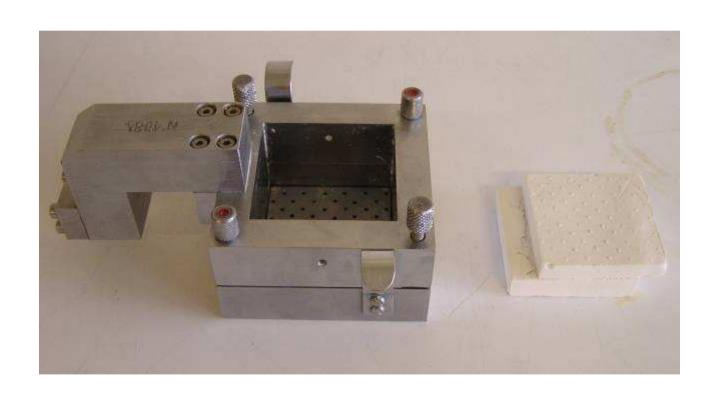
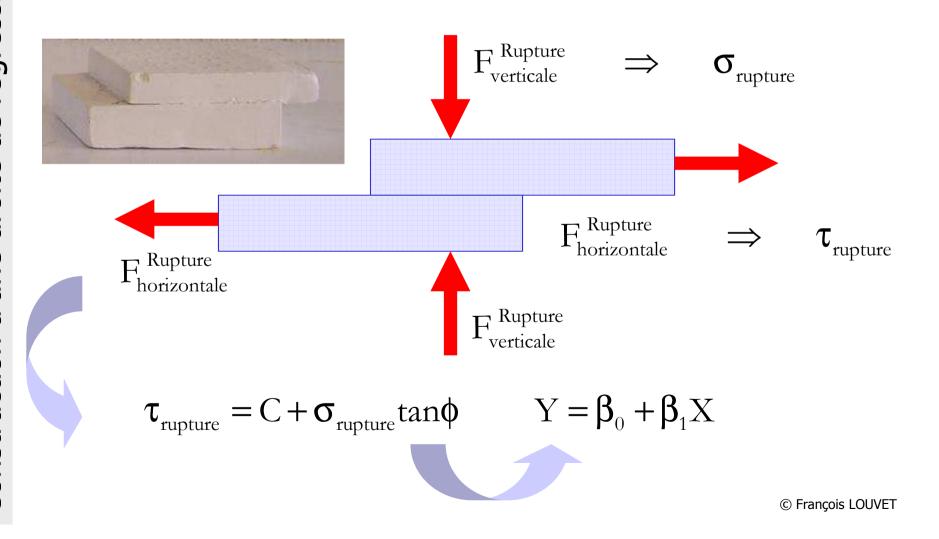
Les points essentiels :

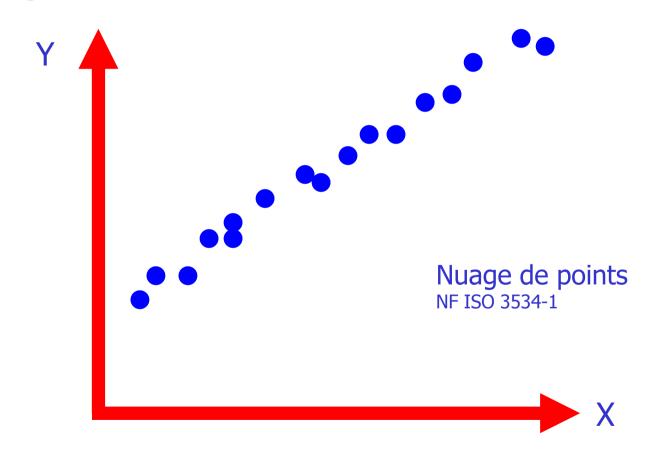
- 1/ Les articulations de la méthode des moindres carrés
- 2/ Analyse de régression / analyse de variance
- 3/ Faire une prévision à l'aide du modèle

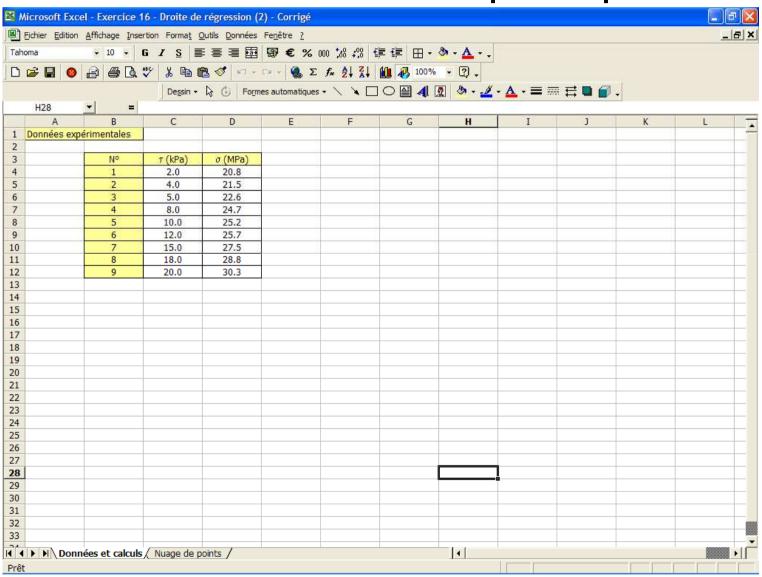
Construction d'une droite de régression (2/2)...

François Louvet
Ecole Nationale Supérieure de Céramique Industrielle
47 – 73 Avenue Albert Thomas
87065 Limoges Cedex
francois.louvet@unilim.fr

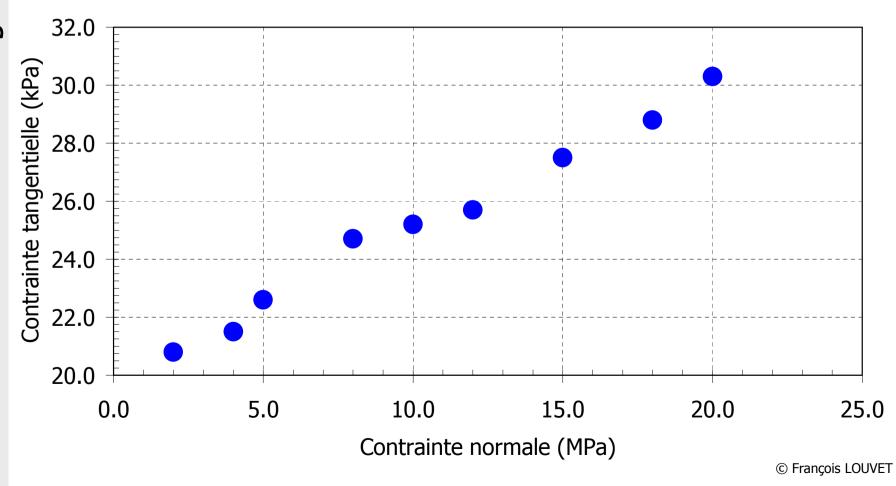


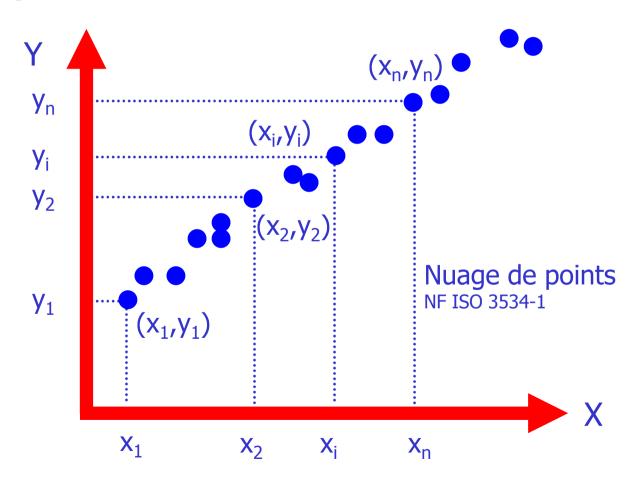


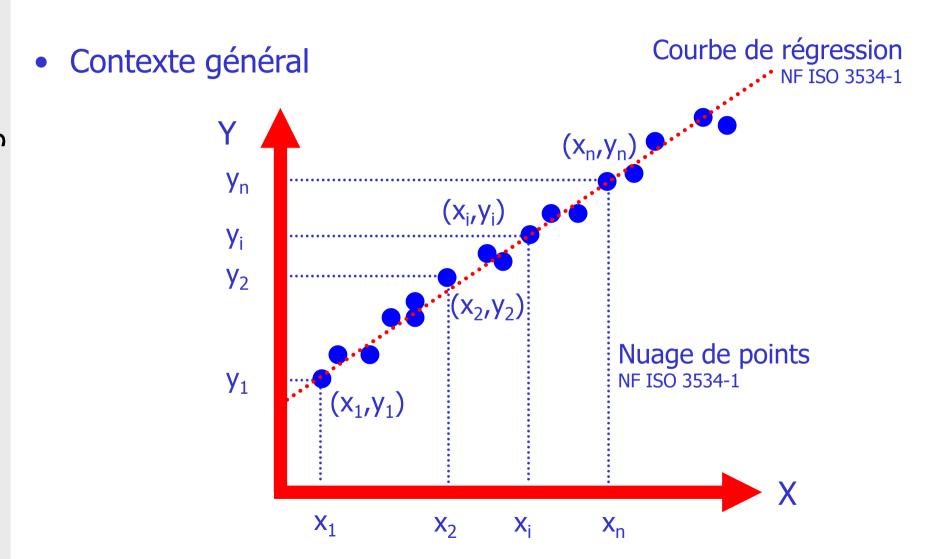


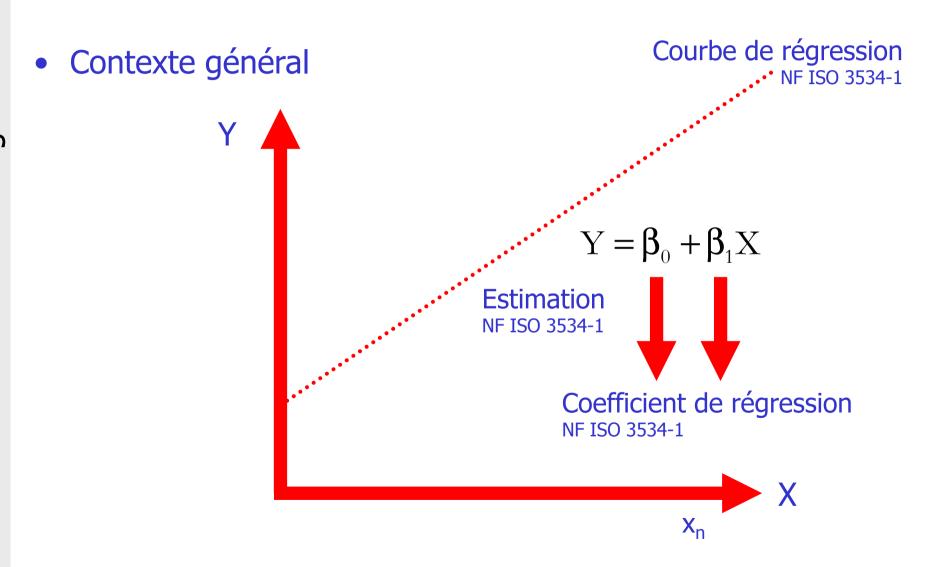


Nuage de points









$$Y = \beta_0 + \beta_1 X \implies$$

$$\begin{cases} y_1 = b_0 + b_1 x_1 + e_1 \\ y_2 = b_0 + b_1 x_2 + e_2 \\ & \dots \\ y_i = b_0 + b_1 x_i + e_i \\ & \dots \\ y_n = b_0 + b_1 x_n + e_n \end{cases}$$

Construction d'une droite de régression

Cisaillement d'un matériau plastique

Contexte général

$$\begin{cases} y_1 = b_0 + b_1 x_1 + e_1 \\ y_2 = b_0 + b_1 x_2 + e_2 \\ \dots \\ y_i = b_0 + b_1 x_i + e_i \\ \dots \\ y_n = b_0 + b_1 x_n + e_n \end{cases} =$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_i \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_i \\ \dots & \dots \\ 1 & x_n \end{pmatrix}$$

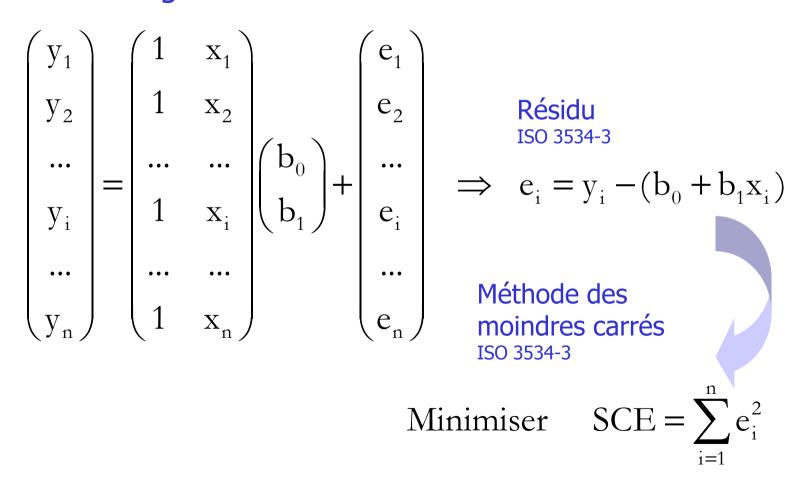
n couples d'observations

Méthode des moindres carrés ISO 3534-3

Résidu ISO 3534-3

$$\begin{pmatrix} b_0 \\ b_1 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_i \\ \dots \\ e_n \end{pmatrix}$$

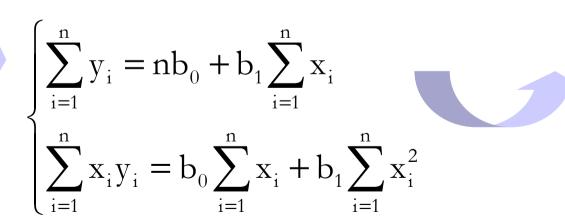
(n+2) inconnues



Minimiser
$$SCE = \sum_{i=1}^{n} e_i^2$$

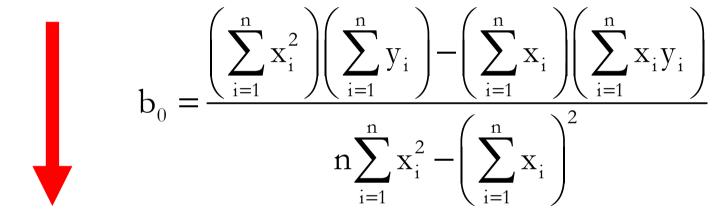
$$\begin{cases} \frac{\partial SCE}{\partial b_0} = 0 \\ \frac{\partial SCE}{\partial b_1} = 0 \end{cases} \text{ et } \begin{cases} \frac{\partial^2 SCE}{\partial b_0^2} > 0 \\ \frac{\partial^2 SCE}{\partial b_1^2} > 0 \end{cases}$$

$$\begin{cases} \frac{\partial SCE}{\partial b_0} = 0 \\ \frac{\partial SCE}{\partial b_1} = 0 \end{cases} \qquad \begin{cases} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \end{cases} = \begin{cases} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{cases} \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}$$

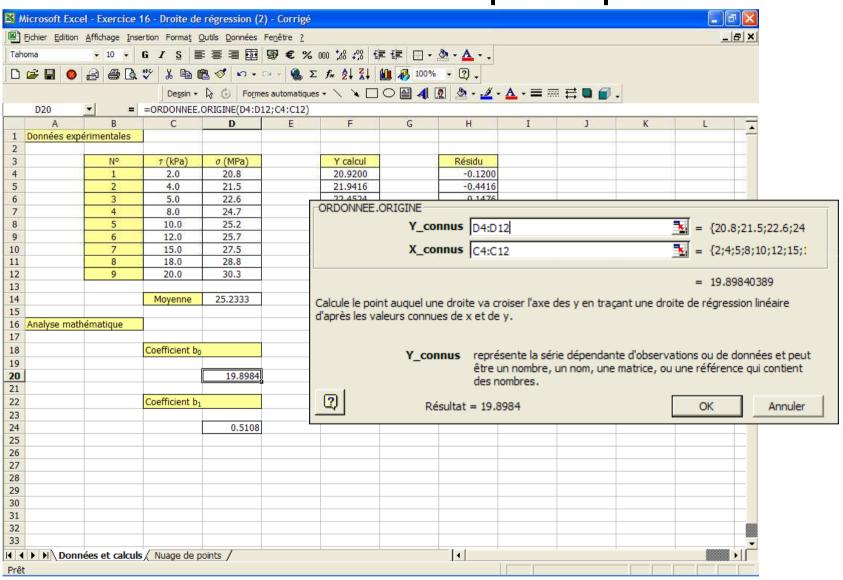


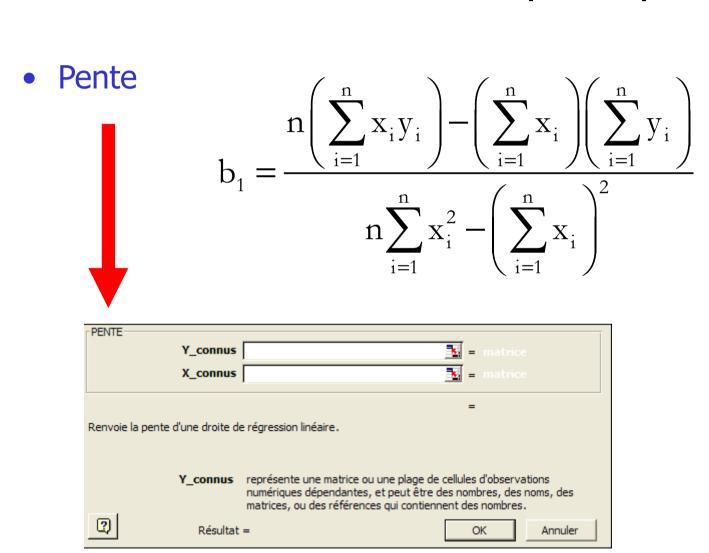
$$\begin{cases} \frac{\partial SCE}{\partial b_0} = 0 \\ \frac{\partial SCE}{\partial b_1} = 0 \end{cases} b_0 = \frac{\left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right)}{n \sum_{i=1}^n x_i} b_1 = \frac{n \left(\sum_{i=1}^n x_i\right) - \left(\sum_{i=1}^n x_i\right)}$$

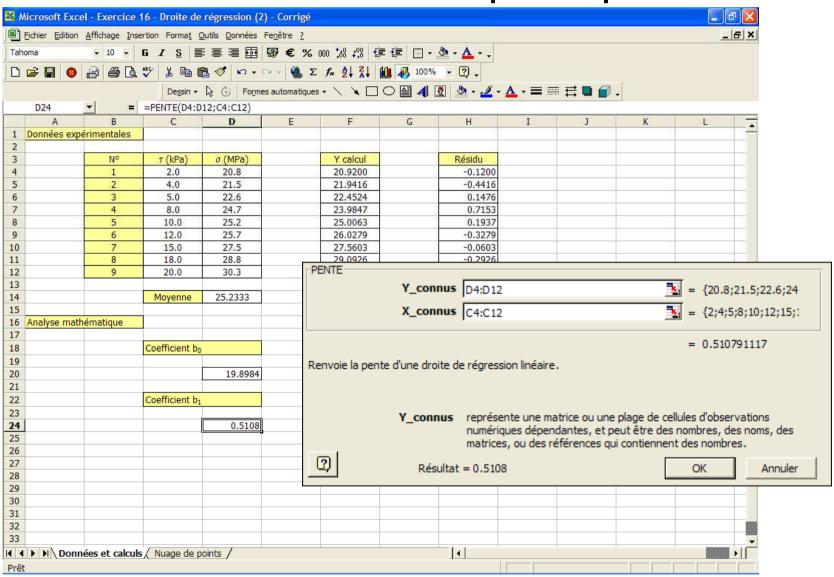
• Ordonnée à l'origine

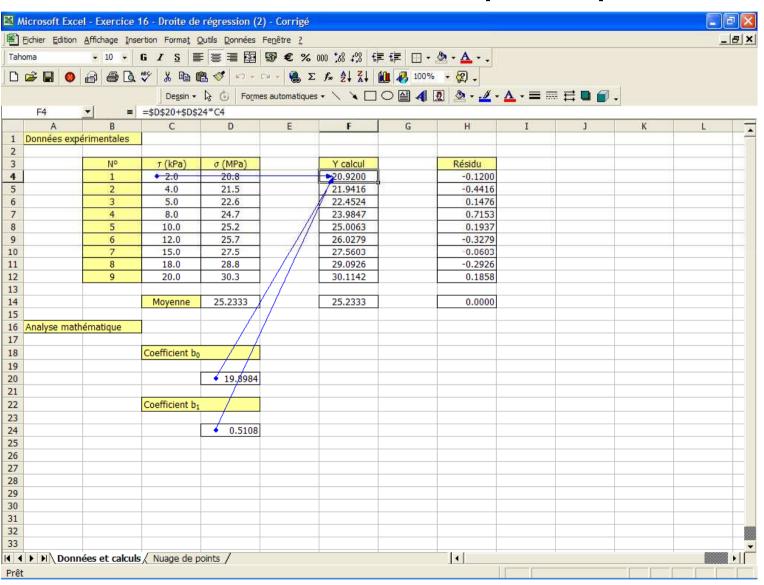


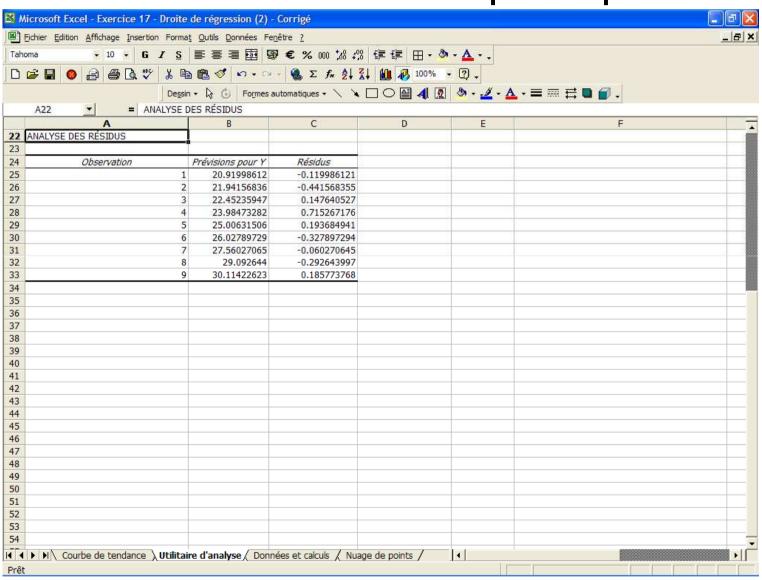
ORDONNEE.ORIGINE				
Y_connus	■ matrice			
X_connus	= matrice			
	_			
Calcule le point auquel une droite va croiser l'axe des y en traçant une droite de régression linéaire d'après les valeurs connues de x et de y.				
Y_connus	représente la série dépendante d'observations ou de données et peut être un nombre, un nom, une matrice, ou une référence qui contient des nombres.			
? Résultat	= OK Annuler			

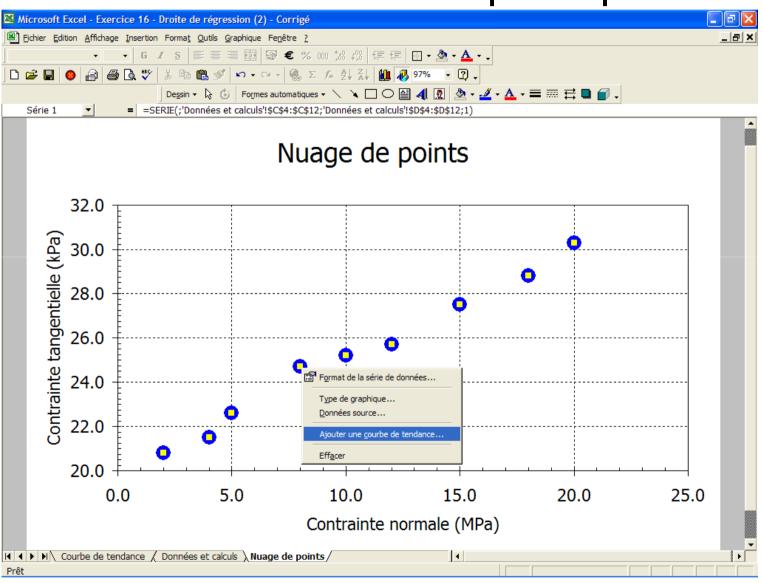


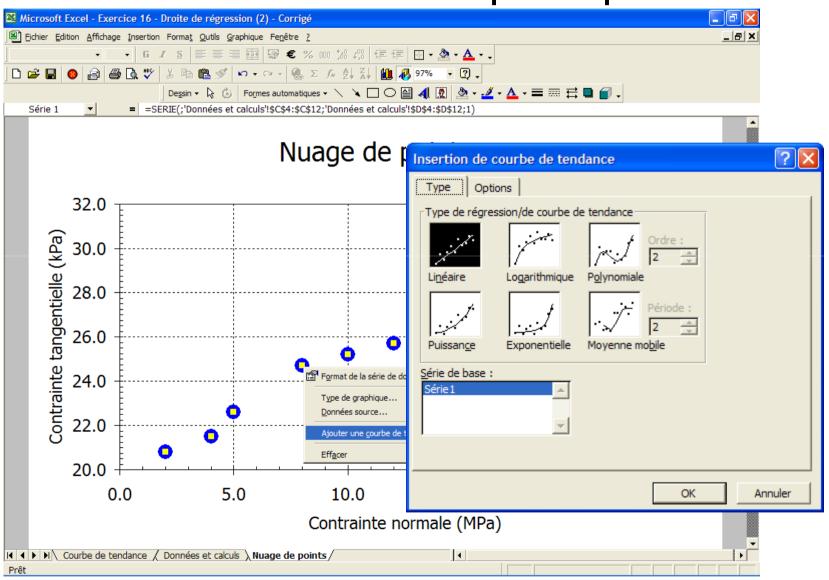


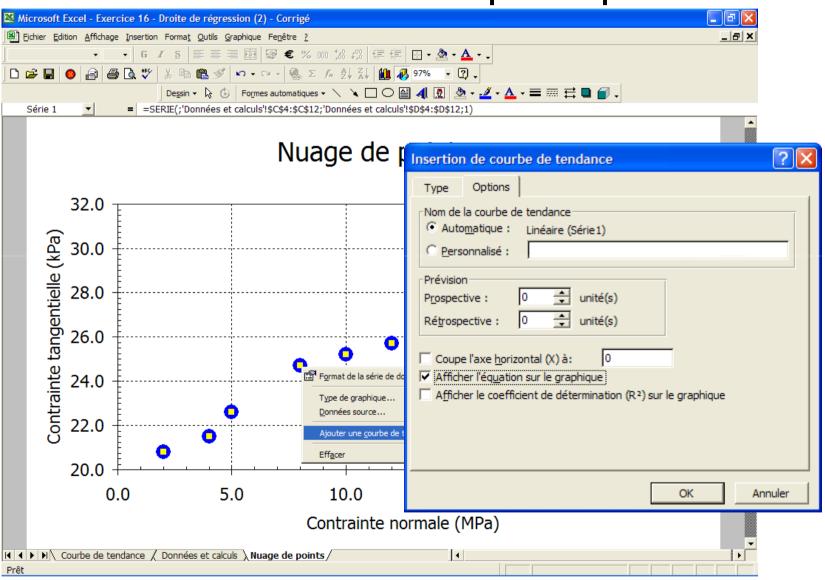




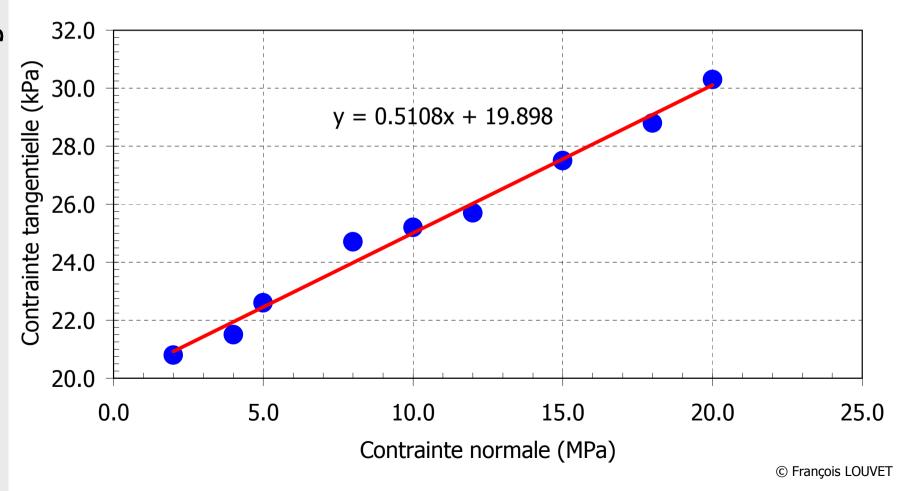


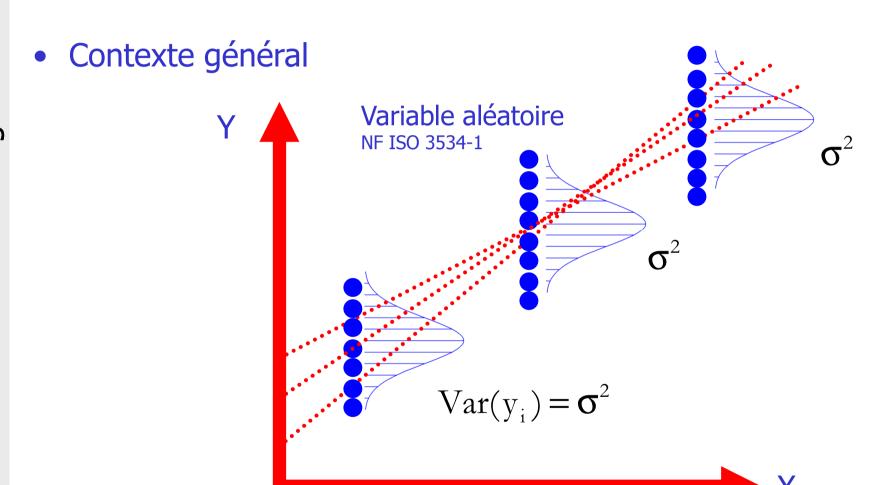




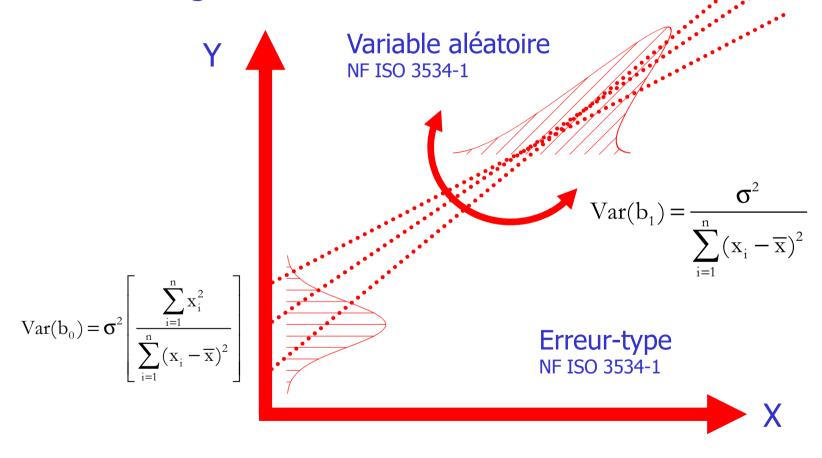


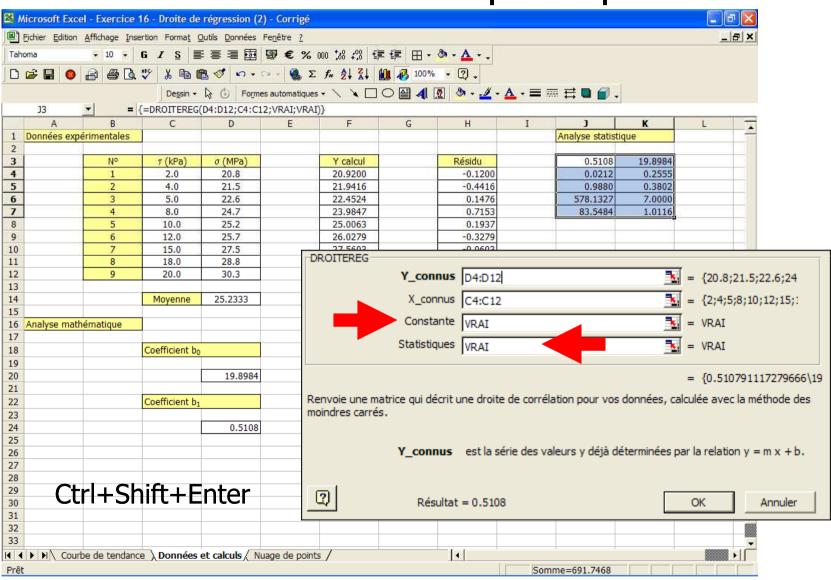
Nuage de points





$$Var(b_0) = \sigma^2 \begin{bmatrix} \sum_{i=1}^n x_i^2 \\ \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \end{bmatrix}$$
Erreur-type
NF ISO 3534-1
$$Var(b_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$





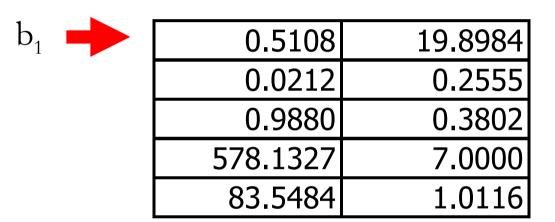
— b	19.8984	0.5108
	0.2555	0.0212
	0.3802	0.9880
	7.0000	578.1327
	1.0116	83.5484

$$b_{0} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

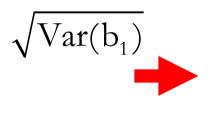
0.5108	19.8984
0.0212	0.2555
0.9880	0.3802
578.1327	7.0000
83.5484	1.0116

$$\sqrt{\text{Var}(\mathbf{b}_0)}$$

$$s(b_0) = \sqrt{\sigma^2 \left[\frac{\sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]} = s_r \sqrt{\left[\frac{\sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]}$$



$$b_{1} = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

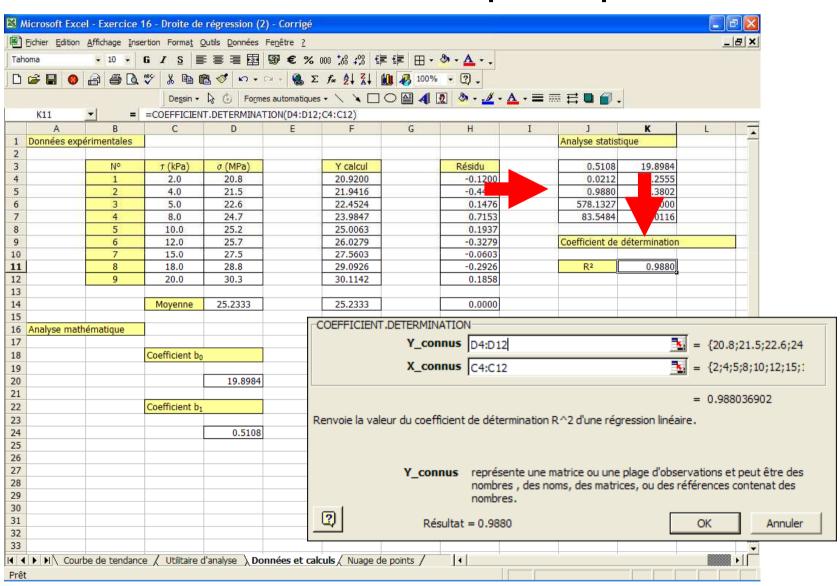


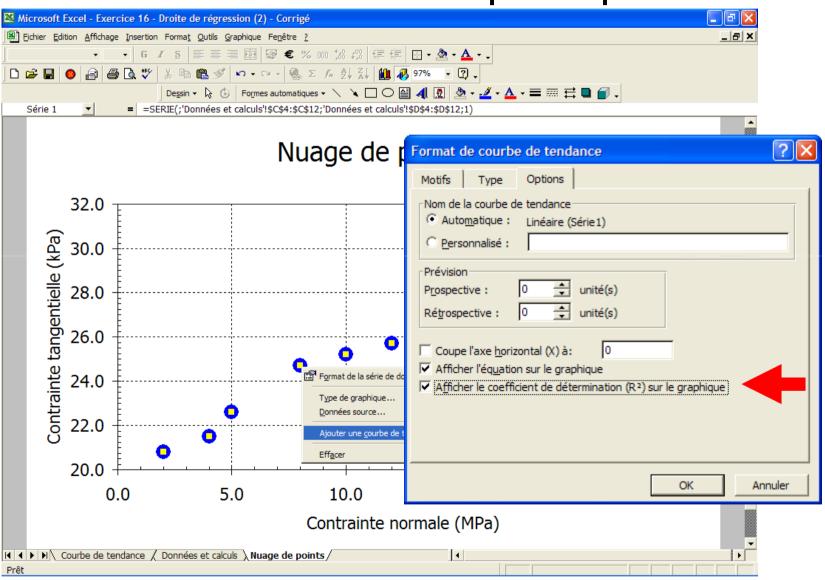
0.5108	19.8984
0.0212	0.2555
0.9880	0.3802
578.1327	7.0000
83.5484	1.0116

$$s(b_1) = \sqrt{\frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}} = s_r \sqrt{\frac{1}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

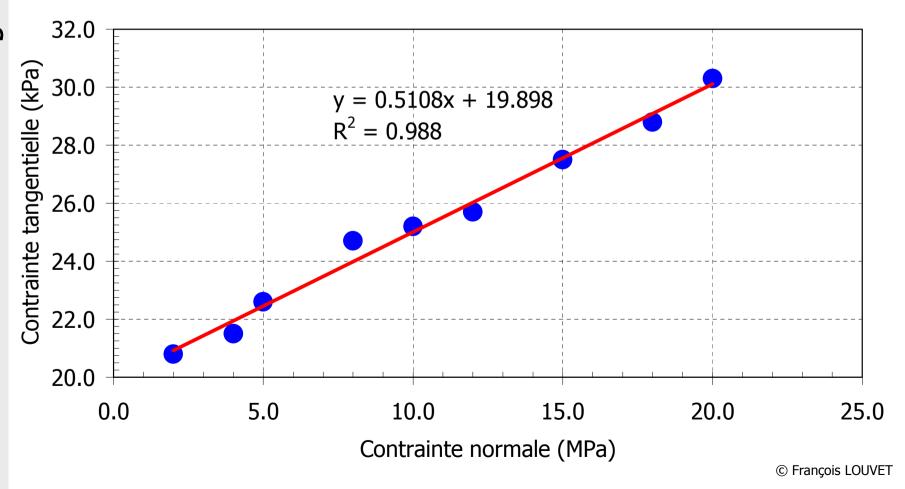
0.5108	19.8984
0.0212	0.2555
0.9880	0.3802
578.1327	7.0000
83.5484	1.0116

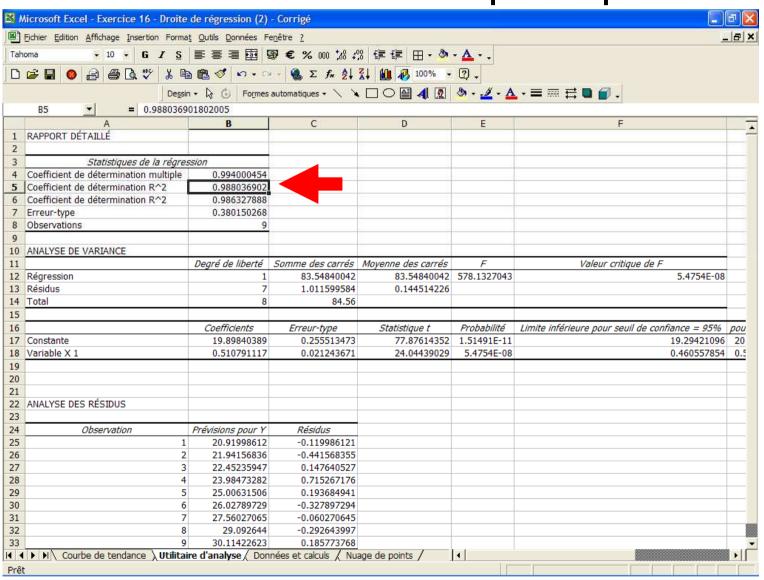
$$R^{2} = \frac{SCM}{SCT} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$





Nuage de points

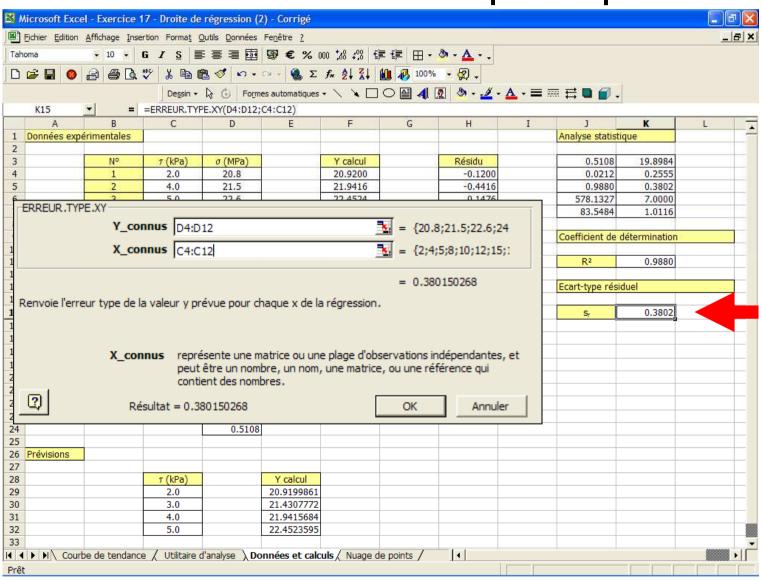


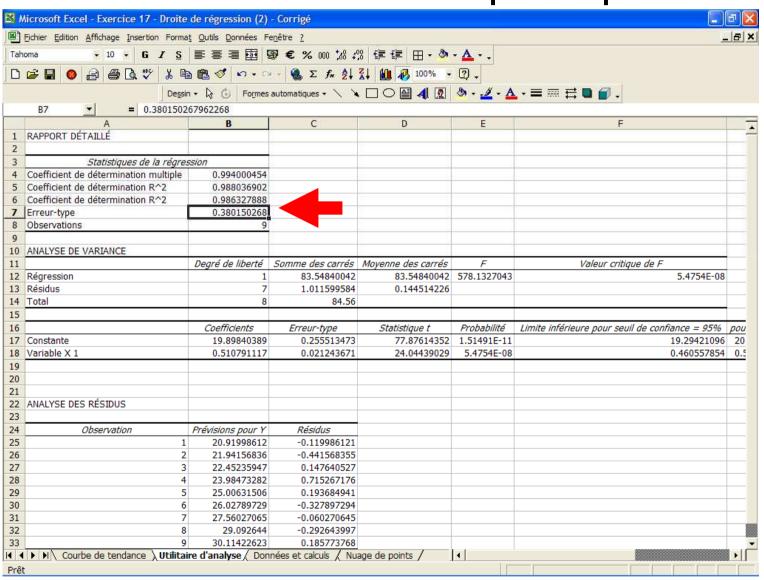


Analyse statistique

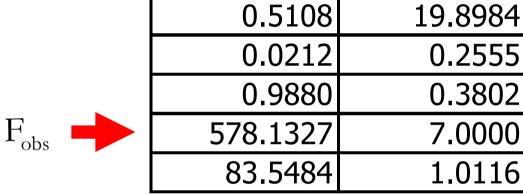
=		
,	19.8984	0.5108
] ,	0.2555	0.0212
S_1	0.3802	0.9880
	7.0000	578.1327
	1.0116	83.5484

$$s_{r} = \sqrt{\frac{SCE}{n-p}} = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-p}}$$





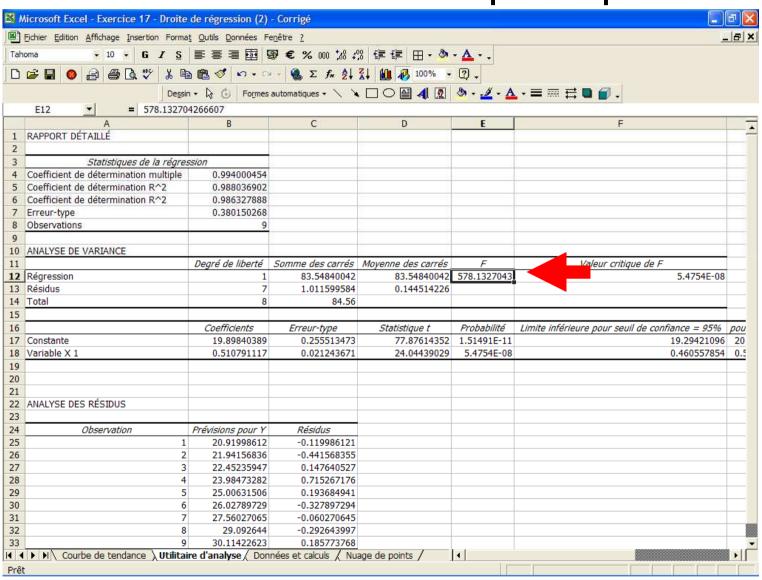
Analyse statistique

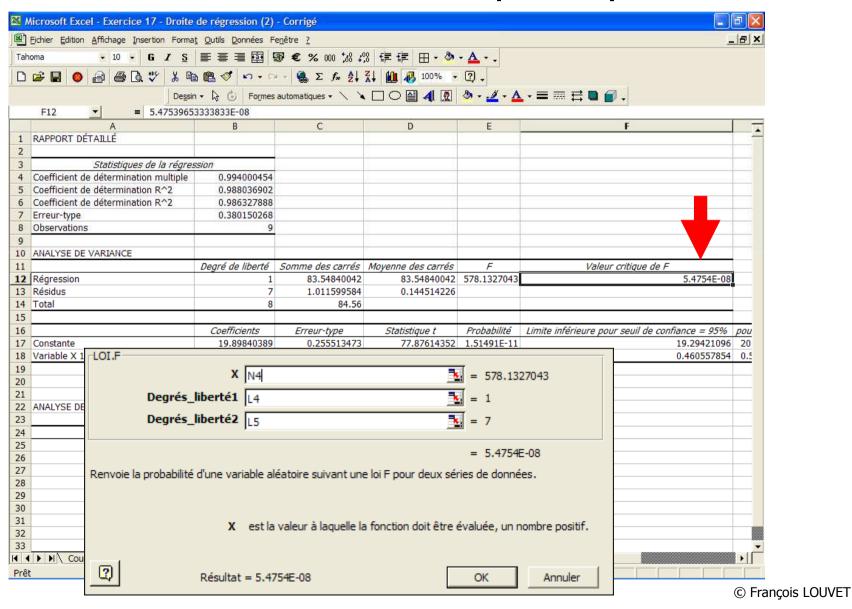


$$F_{obs} = \frac{\left(\frac{SCM}{p-1}\right)}{\left(\frac{SCE}{n-p}\right)} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}$$

$$\frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}$$

© François LOUVET

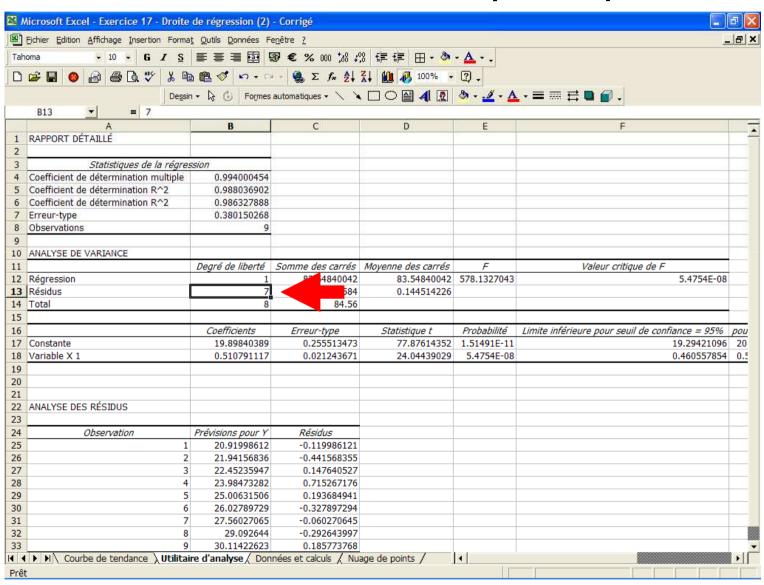


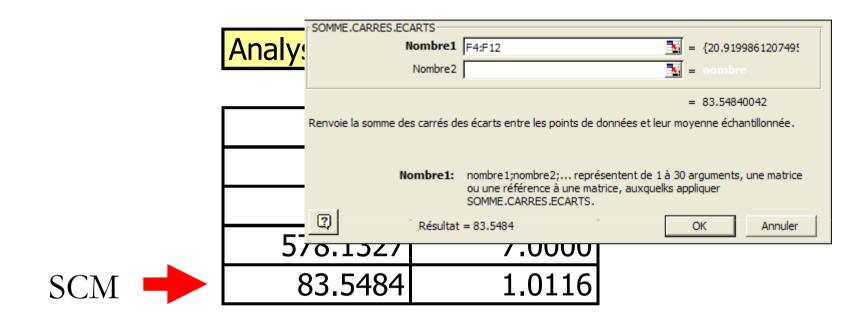


Analyse statistique

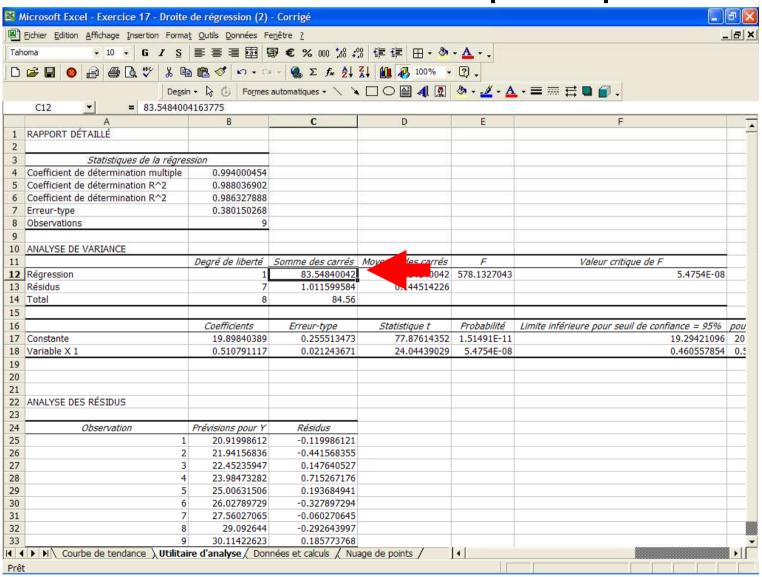
0.5108	19.8984
0.0212	0.2555
0.9880	0.3802
578.1327	7.0000
83.5484	1.0116

$$v_r = n - p$$





$$SCM = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

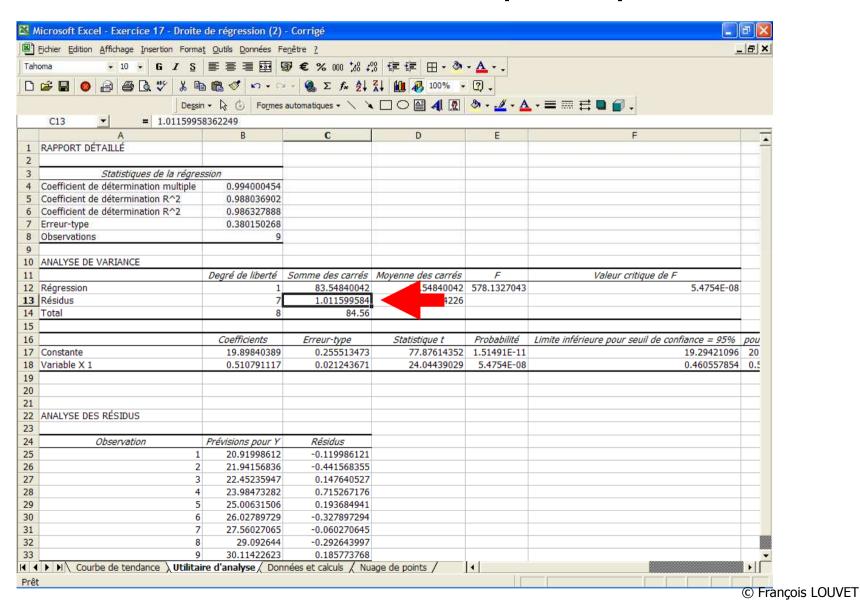


Analyse statistique

0.5108	19.8984
0.0212	0.2555
0.9880	0.3802
578.1327	7.0000
83.5484	1.0116

SCE

$$SCE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$



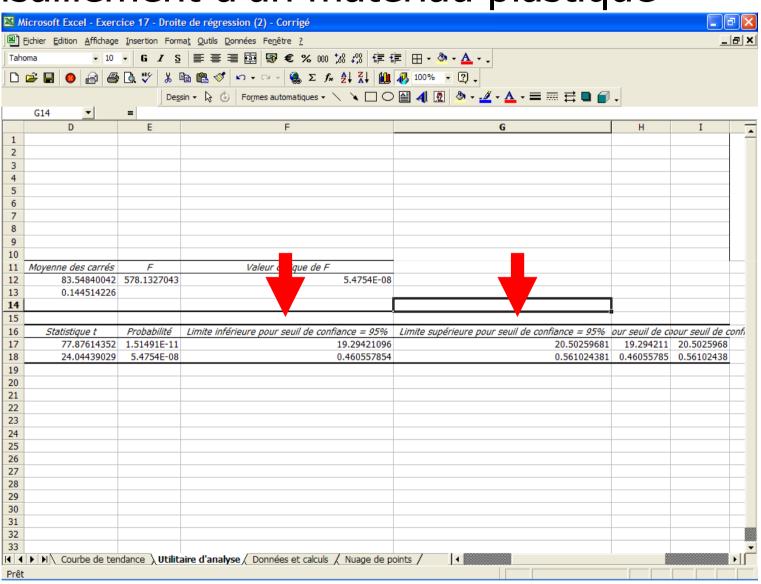
Contexte général

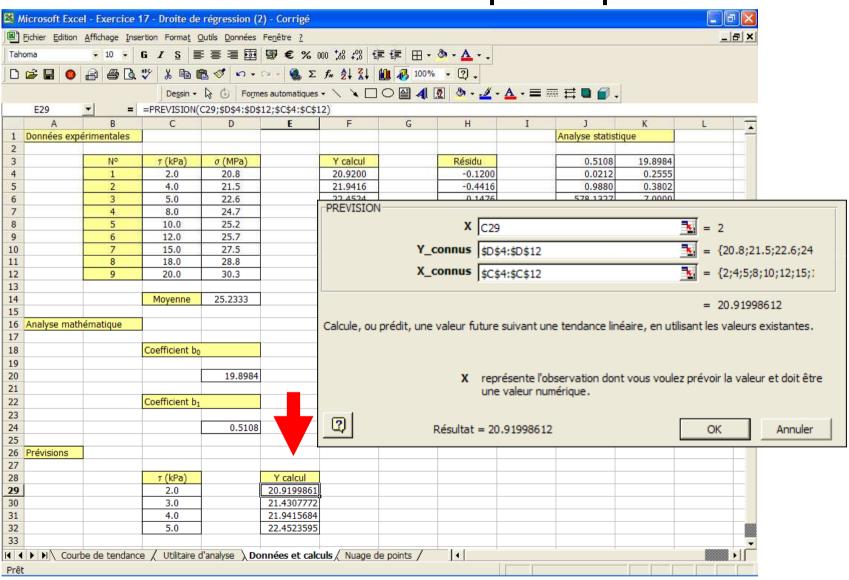
Intervalle bilatéral de confiance NF ISO 3534-1

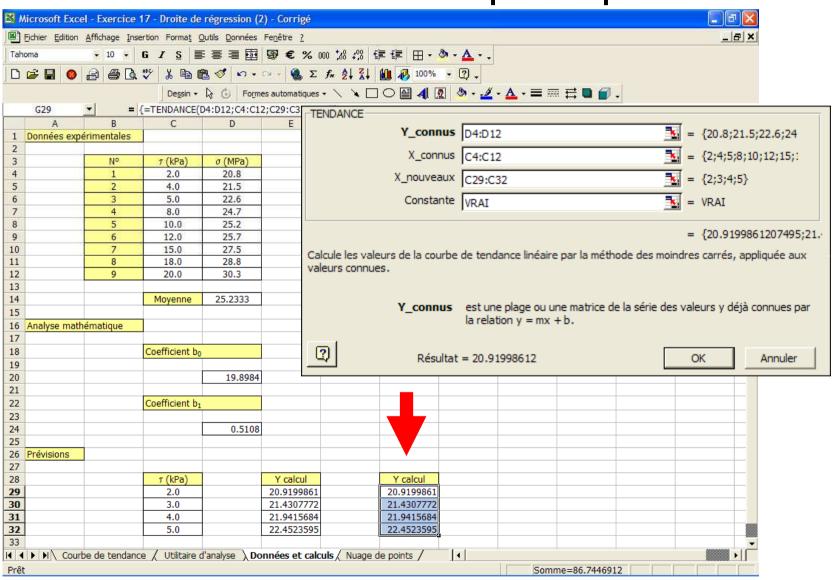
$$\mathbf{b}_0 - \mathbf{k}\sqrt{\mathrm{Var}(\mathbf{b}_0)} \le \mathbf{\beta}_0 \le \mathbf{b}_0 + \mathbf{k}\sqrt{\mathrm{Var}(\mathbf{b}_0)}$$

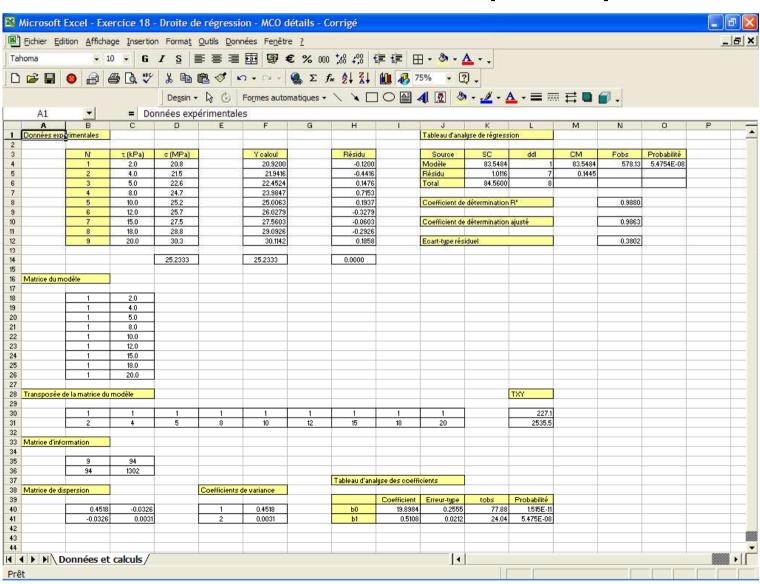
$$\mathbf{b_1} - \mathbf{k}\sqrt{\mathrm{Var}(\mathbf{b_1})} \le \beta_1 \le \mathbf{b_1} + \mathbf{k}\sqrt{\mathrm{Var}(\mathbf{b_1})}$$

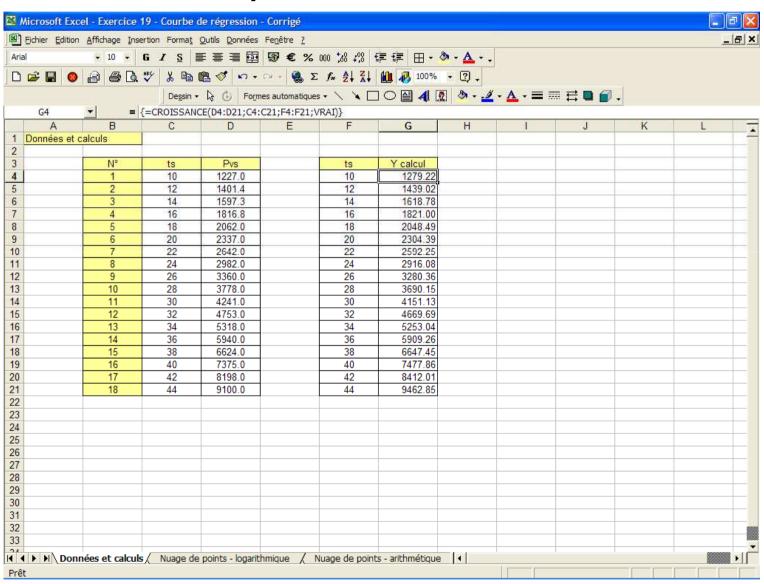
Facteur d'élargissement NF ENV 13005



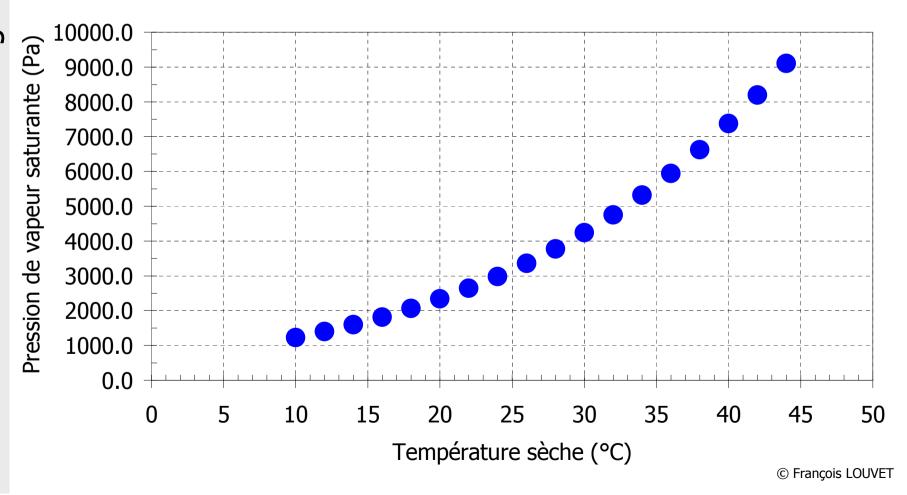


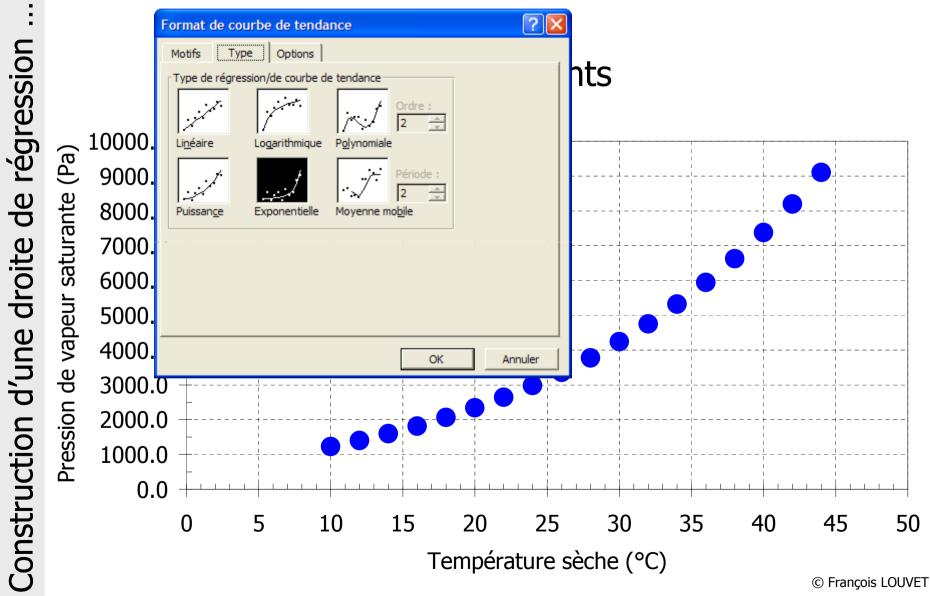






Nuage de points





Nuage de points

