
Promenade en Informatique Graphique

en compagnie des mathématiques

Frédéric Mora

enseignant-chercheur en informatique (graphique) à l’université de Limoges
Membre du laboratoire XLIM (UMR CNRS 7252)

Responsable du département Métiers du Multimédia et de l’Internet à l’IUT du Limousin

Promenade en Informatique Graphique

en compagnie des mathématiques

Ce qu’on va (essayer de) faire :
• découvrir le domaine via plusieurs aspects
• montrer la diversité des maths utilisés

Ce qu’on ne fera pas :
• un cours de math
• un cours d’informatique

Informatique Graphique > c’est à dire ?

Qu’est-ce ?

• un domaine de l’informatique

Ca sert à quoi ?

• créer des images et des films par ordinateur

Informatique Graphique > c’est à dire ?

Infographie

Infographics

Information graphics

Ambigu

Informatique Graphique > (très très) brève histoire de la 3D

Informatique Graphique > (très très) brève histoire de la 3D

La première « machine » à faire de la 3D

• le perspectographe

• l’essentiel est déjà là

Informatique Graphique > (très très) brève histoire de la 3D
Naissance de la 3D moderne

• dans les années 1950, au MIT pour

l’armée US (merci la guerre froide…)

• 1967, Université de l’Utah,

modélisation d’objet 3D

• 1975, the Utah/Newell Teapot

whirlwind

Informatique Graphique > (très très) brève histoire de la 3D

• la 3D coûte terriblement cher, réservée à un

usage industriel ou militaire)

• année 1980, chute des coût (IBM-PC,

Macintosh)

• Année 1990, apparition des cartes

accélératrices 3D grand public (Voodoo 3DFX,

Playstation, Dreamcast…)

Informatique Graphique > (très très) brève histoire de la 3D

Informatique Graphique > domaine de recherche

Informatique graphique

Modélisation (Animation) Rendu

Informatique Graphique > domaine de recherche

Modélisation Rendu

Informatique Graphique > modélisation

Modélisation géométrique > quads, triangles et primitives

Géométrie dans l’espace

Modélisation géométrique > opérations CSG (algèbre de Boole)

union soustraction intersection

Modélisation géométrique > George Boole

George Boole, né le 2 novembre 1815 à Lincoln (Royaume-Uni) et
mort le 8 décembre 1864 à Ballintemple (Irlande), est un logicien,
mathématicien et philosophe britannique. Il est le créateur de la logique
moderne, fondée sur une structure algébrique et sémantique, que l'on
appelle algèbre de Boole en son honneur.

De 1844 à 1854, il crée une algèbre binaire, dite booléenne,
n'acceptant que deux valeurs numériques : 0 et 1. Cette algèbre aura
de nombreuses applications en téléphonie et en informatique,
notamment grâce à Claude Shannon en 1938, près d'un siècle plus
tard.

https://fr.wikipedia.org/wiki/2_novembre
https://fr.wikipedia.org/wiki/Novembre_1815
https://fr.wikipedia.org/wiki/1815
https://fr.wikipedia.org/wiki/Lincoln_(Royaume-Uni)
https://fr.wikipedia.org/wiki/Royaume-Uni
https://fr.wikipedia.org/wiki/8_d%C3%A9cembre
https://fr.wikipedia.org/wiki/D%C3%A9cembre_1864
https://fr.wikipedia.org/wiki/1864
https://fr.wikipedia.org/wiki/Ballintemple
https://fr.wikipedia.org/wiki/Irlande_(%C3%AEle)
https://fr.wikipedia.org/wiki/Logique
https://fr.wikipedia.org/wiki/Math%C3%A9maticien
https://fr.wikipedia.org/wiki/Philosophe
https://fr.wikipedia.org/wiki/Royaume-Uni
https://fr.wikipedia.org/wiki/Logique
https://fr.wikipedia.org/wiki/Structure_(math%C3%A9matiques)
https://fr.wikipedia.org/wiki/Structure_alg%C3%A9brique
https://fr.wikipedia.org/wiki/S%C3%A9mantique
https://fr.wikipedia.org/wiki/Alg%C3%A8bre_de_Boole_(logique)
https://fr.wikipedia.org/wiki/Alg%C3%A8bre_de_Boole_(logique)
https://fr.wikipedia.org/wiki/Claude_Shannon

Modélisation géométrique > Non Uniform Rational B-Splines
Spline

Bézier
B-Spline NURBS

Courbe Surface

(dérivable)

Modélisation géométrique > surfaces de subdivision

Subdivisions itératives des surfaces
par introduction de nouveaux
sommets calculés par interpolation
des sommets présents à la
précédente itération.

Le schéma d’interpolation retenu
permet d’influer sur le résultat.

Pratique pour générer n’importe
quel niveau de détail.
LOD-friendly.

Modélisation procédurale > principe général

• Représenter « mathématiquement » les choses plutôt que géométriquement

• comprendre, « analytiquement »

• Le modèle devient une formule pour calculer la distance à une forme

• représentation implicite versus explicite

• calculs versus mémoire

• Offre aussi quelques facilités pour différents problèmes

• objets « mous »

• modèles très grands ou très complexes

• détection de collisions (animation)

• éclairage si dérivable (normale en tout point

float f1(vec3 p, float s)
{
 return length(p)-s;
}

Modélisation procédurale > quelques primitives (quiz)

float f2(vec3 p, vec3 b)
{
 return length(max(abs(p)-b,0.0));
}

float f3(vec3 p, vec2 t)
{
 vec2 q = vec2(length(p.xz)-t.x,p.y);
 return length(q)-t.y;
}

float sdSphere(vec3 p, float s)
{
 return length(p)-s;
}

Modélisation procédurale > quelques primitives

float udBox(vec3 p, vec3 b)
{
 return length(max(abs(p)-b,0.0));
}

float sdTorus(vec3 p, vec2 t)
{
 vec2 q = vec2(length(p.xz)-t.x,p.y);
 return length(q)-t.y;
}

float f4(vec3 p, vec3 r)
{
return (length(p/r) - 1.0) *

 min(min(r.x,r.y),r.z);
}

float f5(vec3 p, vec2 c)
{
 // c must be normalized
 float q = length(p.xy);
 return dot(c, vec2(q,p.z));
}

float f6(vec3 p, vec2 h)
{
 vec2 d = abs(vec2(length(p.xz),p.y)) - h;
 return min(max(d.x,d.y),0.0) +
 length(max(d,0.0));
}

Modélisation procédurale > quelques primitives (quiz 2)

float sdEllipsoid(vec3 p, vec3 r)
{
return (length(p/r) - 1.0) *

 min(min(r.x,r.y),r.z);
}

float sdCone(vec3 p, vec2 c)
{
 // c must be normalized
 float q = length(p.xy);
 return dot(c, vec2(q,p.z));
}

float sdCappedCylinder(vec3 p, vec2 h)
{
 vec2 d = abs(vec2(length(p.xz),p.y)) - h;
 return min(max(d.x,d.y),0.0) +
 length(max(d,0.0));
}

Modélisation procédurale > quelques primitives

float sdTorus(vec3 p, vec2 t)
{
 vec2 q = vec2(length(p.xz)-t.x, p.y);
 return length(q)-t.y;
}

float sdTorus88(vec3 p, vec2 t)
{
 vec2 q = vec2(length8(p.xz)-t.x, p.y);
 return length8(q)-t.y;
}

float sdTorus82(vec3 p, vec2 t)
{
 vec2 q = vec2(length(p.xz)-t.x, p.y);
 return length8(q)-t.y;
}

Modélisation procédurale > varier les distances

float opRep(vec3 p, vec3 c)
{
 vec3 q = mod(p,c)-0.5*c;
 return primitive(q);
}

float opScale(vec3 p, float s)
{
 return primitive(p/s)*s;
}

vec3 opTx(vec3 p, mat4 m)
{
 vec3 q = invert(m)*p;
 return primitive(q);
}

Modélisation procédurale > opérations sur les domaines

float op1(float d1, float d2)
{
 return min(d1,d2);
}

float op2(float d1, float d2)
{
 return max(-d1,d2);
}

float op3(float d1, float d2)
{
 return max(d1,d2);
}

Modélisation procédurale > opérations (quiz 3)

float opUnion(float d1, float d2)
{
 return min(d1,d2);
}

float opSubstraction(float d1, float d2)
{
 return max(-d1,d2);
}

float opIntersection(float d1, float d2)
{
 return max(d1,d2);
}

Modélisation procédurale > opérations (quiz 3)

float displacement(vec3 p)
{

return sin(20.0*p.x) +
 sin(20.0*p.y) + sin(20.0*p.z);

}

float opDisplace(vec3 p)
{
 float d1 = primitive(p);
 float d2 = displacement(p);
 return d1+d2;
}

float opBlend(vec3 p)
{
 float d1 = primitiveA(p);
 float d2 = primitiveB(p);
 return smin(d1, d2);
}

Modélisation procédurale > déformer les distances

float opTwist(vec3 p)
{
 float c = cos(20.0*p.y);
 float s = sin(20.0*p.y);
 mat2 m = mat2(c,-s,s,c);
 vec3 q = vec3(m*p.xz,p.y);
 return primitive(q);
}

float opCheapBend(vec3 p)
{
 float c = cos(20.0*p.y);
 float s = sin(20.0*p.y);
 mat2 m = mat2(c,-s,s,c);
 vec3 q = vec3(m*p.xy,p.z);
 return primitive(q);
}

Modélisation procédurale > déformer les domaines

Modélisation procédurale > example

Au passage : comment on rend cela ?

- Ray marching -

https://www.shadertoy.com/view/Xds3zN

float smin(float a, float b, float k)
{
 float h = clamp(0.5+0.5*(b-a)/k, 0.0, 1.0);
 return mix(b, a, h) - k*h*(1.0-h);
}

float opBlend(vec3 p)
{
 float d1 = primitiveA(p);
 float d2 = primitiveB(p);
 return smin(d1, d2);
}

Modélisation procédurale > « smooth minimum »

clamp : limiter un calcul à un intervalle donné, mix : interpolation linéaire

Modélisation procédurale > examples

https://www.shadertoy.com/view/Mds3z2
https://www.shadertoy.com/view/Mss3zM
https://www.shadertoy.com/view/MsXGWr
https://www.shadertoy.com/view/4dKGWm

Modélisation procédurale > techniques (plus) avancées

Modélisation procédurale > techniques (plus) avancées

Le syndrome du parquet stratifié

Modélisation procédurale > techniques (plus) avancées

Modélisation procédurale > fractional Brownian motion

• Concrètement : une somme de fonctions de bruit (de Perlin souvent)

• masquer les aspects périodiques

• fonctions de fréquences croissantes et d’amplitudes décroissantes

• fréquence basse, amplitude forte : forme globale

• fréquence haute, amplitude faible : ajout de détails

Modélisation procédurale > fractional Brownian motion

Modélisation procédurale > fractional Brownian motion

Modélisation procédurale > fractional Brownian motion

Modélisation procédurale > fractional Brownian motion

https://www.shadertoy.com/view/MdX3Rr
https://www.shadertoy.com/view/4tdSWr
https://www.shadertoy.com/view/Xd23zh
https://www.shadertoy.com/view/XslGRr

Modélisation procédurale > bonus : les fractales

https://www.shadertoy.com/view/lsX3W4
https://www.shadertoy.com/view/MtX3Ws
https://www.shadertoy.com/view/Mdf3z7
https://www.shadertoy.com/view/ldyGWm

Informatique Graphique > rendu

Informatique graphique

Modélisation (Animation) Rendu

Rendu > Non Photo-Réaliste (NPR)

Rendu > Temps réel (60 images par seconde, 0.016s par image…)

Rendu > Réaliste (à base physique)

Rendu réaliste > l’équation de rendu [Kajiya 1986]

• Un résultat inspiré de la thermique

• Décrit le comportement de la lumière dans un environnement 3D

Rendu réaliste > l’équation de rendu [Kajiya 1986]

p

0 si ce n’est pas une
source

BRDF : Bidirectional
Reflectance Distribution

Function Equation récursive !

et toujours le normale

Rendu réaliste > l’équation de rendu [Kajiya 1986]

Intégration sur l’hémisphère Intégration sur les surfaces

occlusion

Deux façons de voir la même chose :

Rendu réaliste > l’équation de rendu [Kajiya 1986]

Rendu réaliste > l’équation de rendu [Kajiya 1986]

Rendu réaliste > résoudre l’équation de rendu

Les algorithmes d’illumination globale

Algorithmes basés éléments finis (subdivision de la géométrie en patchs)

• Exemple : Radiosité

Algorithme basé Monte Carlo, échantillonnage et transformation de l’intégrale en somme de

contributions point à point

• Examples biaisés : Photon Mapping

• Examples non biaisés : Path Tracing, Bidirectional Path Tracing, Metropolis Light Transport

Rendu réaliste > résoudre l’équation de rendu

Rendu réaliste > résoudre l’équation de rendu

Chemin de profondeur 2

Rendu réaliste > résoudre l’équation de rendu

Chemin de profondeur 3

Rendu réaliste > résoudre l’équation de rendu

Chemin de profondeur 5

• Il faut beaucoup d’échantillons (de chemins) pour que la somme converge vers

l’intégrale

• Certain phénomène (réflections spéculaires, caustiques…) sont plus difficiles à

échantillonner.

• Beaucoup de travaux d’un point de vue statistique et probabiliste pour améliorer les

stratégies d’échantillonnage et donc la convergence du résultat

• Un sous-échantillonnage engendre du bruit dans l’image

Rendu réaliste > résoudre l’équation de rendu

Démo (Mitsuba)

Rendu réaliste > tout vient à point à qui sait attendre (longtemps)

• plus de 90% des temps de calculs sont imputables au terme V…

• le Graal : faire du rendu réaliste en temps réel (0.016s par image…) Brigade (youtube)

https://www.youtube.com/watch?v=BpT6MkCeP7Y

• visibilité point à point (le long d’un segment de droite)

Visibilité > un enjeu, plusieurs niveaux de complexité

• visibilité segment à segment ou polygone à polygone

• visibilité point à segment/polygone (ou depuis un point)

https://www.youtube.com/watch?v=BpT6MkCeP7Y

• visibilité point à point (le long d’un segment de droite)

Visibilité > un enjeu, plusieurs niveaux de complexité

• visibilité segment à segment ou polygone à polygone

• visibilité point à segment/polygone (ou depuis un point)

2D 3D

https://www.youtube.com/watch?v=BpT6MkCeP7Y

• visibilité point à point (le long d’un segment de droite)

Visibilité > un enjeu, plusieurs niveaux de complexité

• visibilité segment à segment ou polygone à polygone

• visibilité point à segment/polygone (ou depuis un point)

2D 3D

0D 0D

1D 2D

2D 4D

https://www.youtube.com/watch?v=BpT6MkCeP7Y

• visibilité point à point (le long d’un segment de droite)

Visibilité > un enjeu, plusieurs niveaux de complexité

• visibilité segment à segment ou polygone à polygone

• visibilité point à segment/polygone (ou depuis un point)

2D 3D

0D 0D

1D 2D

2D 4D

https://www.youtube.com/watch?v=BpT6MkCeP7Y

Visibilité > un enjeu, plusieurs niveaux de complexité

• La complexité d’un problème de visibilité peut s’apprécier à la dimension de

l’ensemble de droites sous-jacent

• En 3D, il existe un saut de complexité lorsqu’on passe de la visibilité depuis un point à

la visibilité depuis une surface

• Appréhender un problème 4D par nature… pas forcément intuitif

• visibilité point à point (le long d’un segment de droite)

Visibilité > solution (?) à tout faire : sampling

• visibilité polygone à polygone

• visibilité point à polygone (ou depuis un point)

0D

2D

4D

https://www.youtube.com/watch?v=BpT6MkCeP7Y

Visibilité > solution (?) à tout faire : sampling

• Principe de base : linéariser un problème complexe

• ici échantillonner un ensemble 4D en n problèmes 0D

• Mais, n’est pas forcément synonyme de rapidité

• cf, la démo Mitsuba et les méthodes de rendu basées Monte Carlo

• Mais, introduit la problématique du sous-échantillonnage (bruit)

• N’est pas une solution à tout faire, ne peut résoudre certains problèmes

• échantillonner à coups de rayons/droites, c’est explorer une pièce noire avec un pointeur laser

Visibilité > limites du sampling

• Example : prouver que deux polygones sont visibles, ou invisibles

• combien d’échantillons par garantir une réponse ? Une infinité…

• Application pratique : Potentially Visible Sets

• Example : est-ce que la vue change au voisinage d’un point ?

• comprendre, si l’on se déplace d’un epsilon (ou plus), est-ce que des objets apparaissent ou disparaissent ?

• ou plus simplement, si je perturbe un rayon d’un epsilon, est-ce que sa visibilité change ?

• introduit la notion de cohérence visuelle

Besoin d’une caractérisation analytique de la visibilité

Visibilité > visibilité analytique, étude en 3D

• [Durand99], étude des discontinuités dans visibilité

(vv) (vee) (eeee)

Visibilité > visibilité analytique, étude en 3D

• [Durand99], étude des discontinuités dans visibilité (ev)

Visibilité > visibilité analytique, étude en 3D

• [Durand99], étude des discontinuités dans visibilité (eee)

Visibilité > visibilité analytique, étude en 3D

• [Durand99], construction d’un graphe dont les noeuds sont des événements visuels

Visibilité > visibilité analytique, étude en 3D

• [Durand99], application en radiosité (discontinuity meshing)

Visibilité > visibilité analytique, étude en 3D

• [Durand99], impossible de gérer tous les cas « dégénérés »

• Il faut monter en dimension, aller dans un espace au moins égale à la dimension du

problème

Espace de Plucker > Julius Plucker

Julius Plücker (16 juin ou 16 juillet 1801 à Elberfeld,
Saint-Empire romain germanique - 22 mai 1868 à
Bonn, Prusse) est un mathématicien et un physicien
allemand. Il a obtenu des résultats fondamentaux en
géométrie analytique et fut un pionnier dans les
recherches sur les rayons cathodiques qui aboutirent à
la découverte de l'électron. Il a aussi beaucoup travaillé
sur les courbes de Lamé.

https://fr.wikipedia.org/wiki/16_juin
https://fr.wikipedia.org/wiki/16_juillet
https://fr.wikipedia.org/wiki/Juillet_1801
https://fr.wikipedia.org/wiki/1801
https://fr.wikipedia.org/wiki/Elberfeld
https://fr.wikipedia.org/wiki/Saint-Empire_romain_germanique
https://fr.wikipedia.org/wiki/22_mai
https://fr.wikipedia.org/wiki/Mai_1868
https://fr.wikipedia.org/wiki/1868
https://fr.wikipedia.org/wiki/Bonn
https://fr.wikipedia.org/wiki/Prusse
https://fr.wikipedia.org/wiki/Math%C3%A9maticien
https://fr.wikipedia.org/wiki/Physicien
https://fr.wikipedia.org/wiki/Allemagne
https://fr.wikipedia.org/wiki/G%C3%A9om%C3%A9trie_analytique
https://fr.wikipedia.org/wiki/Rayons_cathodiques
https://fr.wikipedia.org/wiki/%C3%89lectron
https://fr.wikipedia.org/wiki/Gabriel_Lam%C3%A9

Espace de Plucker > paramétrisation des droites de

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

op oqpq x

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

op oqpq x

op oqx
pq

Espace de Plucker > paramétrisation des droites de

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > dualité point - hyperplan

Espace de Plucker > orientation relative de 2 droites
F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > Quadrique de Plucker

• la paramétrisation des droites réelles est injective

• Dans l’espace de Plucker, l’ensemble des droites réelles forme une quadrique de

dimension 4 appelée hypersurface de Plucker ou parfois variété de Grassmann. Elle

est caractérisable comme suit :

• Et donc on retrouve bien la dimension 4 de notre problème de visibilité

Espace de Plucker > droites intersectant un triangle

Espace de Plucker > droites intersectant un triangle

• l a une orientation homogène avec les droites supports des arêtes du triangle

• c’est le cas pour toute droite incluse dans l’intersection des 3 demis espaces dans

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > quiz

• Comment prouver qu’il existe des visibilités à travers une séquence d’ouvertures ?

Espace de Plucker > de quoi parle-t-on ?

• considérant les hp issus des arêtes de polygones

• une droite intersectant la séquence a son point de Plucker du côté + de tous les hp

• l’intersection des demis espaces hp+ contient toutes les droites intersectant la séquence

• l’intersection de demis espaces, c’est un polyèdre convexe, un polytope si fermé

• il existe des droites intersectant la sequence de polygones si :

Polytope ? > Alicia Boole Stott

Alicia Boole Stott (June 8, 1860 – December 17, 1940) was
an Irish-English mathematician. Despite never holding an
academic position, she made a number of valuable
contributions to the field, receiving an honorary doctorate from
University of Groningen. She is best known for coining the term
"polytope" for a convex solid in four (or more) dimensions, and
having an impressive grasp of four-dimensional geometry from
a very early age. Alicia Boole was born in Cork, Ireland, the
third daughter of mathematician and logician George Boole and
Mary Everest Boole

https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Four-dimensional_space
https://en.wikipedia.org/wiki/Cork_(city)
https://en.wikipedia.org/wiki/Ireland
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Mary_Everest_Boole

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > généralisation

• repartons avec un seul triangle et une représentation simplifiée

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

cells and one of them contains all the lines (i.e. their Plücker
points) stabbing the triangle, while the other cells contain the
lines missing the triangle.

Pellegrini [Pel04] develops a more general approach. He

a

b

c

πa

πb

πc

R3 P5

Figure 3: Left: 2 triangles and 3 lines a, b, c in various

configurations. Right: The arrangement of hyperplanes (il-

lustrated by 6 2D lines) mapped from the 6 triangles edges.

They divide the Plücker space into cells. Filled cells are set

of lines intersecting at least one triangle. πa, πb and πc are

the Plücker points mapped from a, b and c. They are located

in the cells they belong to, according to the triangle(s) they

stab. For example, πb has a consistent orientation with re-

spect to the 6 hyperplanes since b intersects the two trian-

gles. Its relevant cell holds all the lines intersecting the two

triangles.

uses the Plücker space as a framework to provide theoreti-
cal bounds on various problems involving lines. Let S be a
set of several triangles (or convex polygons) and LS be the
lines spanning the triangles edges in S. Each line in LS can
be mapped to Plücker space as a hyperplane. This builds an
arrangement in Plücker space: A decomposition of the space
into cells by a set of hyperplanes. All the points in a same
cell satisfy the following property: They all have the same
sign with respect to its bounding hyperplanes. This is illus-
trated in Figure 3 with 2 triangles. Thus, in Plücker space,
all the lines (i.e. their Plücker points) belonging to the same
cell intersect the same subset of triangles in S. Notice that
this subset can be empty if the lines miss all the triangles in
S.

The decomposition of Plücker space into cells allows to
group lines together according to the subset of triangles they
intersect. This defines an equivalence relation on lines. Each
cell corresponds to an equivalence class (sometimes called
isotopy class [Pel91] or orientation class [CEG∗96]). To sum
up, the Pellegrini approach allows an exact and analytical
representation of all the sets of lines generated by a set of
triangles S, using the set of lines LS.

3.3. Orientation of lines intersecting two polygons

We focus on the set of lines intersecting two convex poly-
gons. We prove the following theorem:

Theorem 1 Let A and B be two convex polygons with n and

m vertices respectively. We define vvset = {vi j, i ∈ [1,n], j ∈
[1,m]} the set of the lines vi j defined by one vertex of A and

one vertex of B. Let l be any line and q a line intersecting A

and B:

side(l,x)≥ 0, ∀x ∈ vvset ⇒ side(l,q)≥ 0,
side(l,x)≤ 0, ∀x ∈ vvset ⇒ side(l,q)≤ 0.

In other words, if all the vertex-to-vertex lines of two poly-
gons have a positive (resp. negative) orientation with respect
to any line l, all the stabbing lines of the two polygons will
have a positive (resp. negative) orientation with respect to l.
This is also illustrated by Figure 5. We refer the reader to the
Appendix at the end of this paper for a detailed proof of the
theorem 1.

Using this theorem, we can determine if the set of lines
stabbing two polygons has a consistent orientation with re-
spect to a given line. The visibilty algorithm presented in the
next section uses this essential result.

It can be proved that the Plücker points of the lines in
vvset are the vertices of the smallest convex polyhedron in
the Plücker space containing the stabbing lines of A and B.
A demonstration can be found in [CAF06, ACFM11], but it
requires advanced knowledge in geometric algebra. For the
understanding and the correctness of this work, the theorem
demonstrated in this paper is sufficient.

4. Algorithm

Since equivalence classes are continuous sets of lines that
hit/miss the same subset of triangles, they represent coher-
ent paths through the scene independently of any viewpoint.
Therefore, two lines belonging to the same equivalence class
are spatially coherent. We use this property to build a Plücker
space partition representing the visibility of an area light
source.

4.1. Overview

We consider a convex area light source L, a triangle T , and
define their occluders O as the triangles intersecting their
convex hull. To represent the light source visibility, we focus
on the sets of lines intersecting L and which either miss all
the occluders in O, or hit at least one occluder in O. Thus,
we define:

• A visible class: Any equivalence class representing a set
of lines that do not intersect any occluders.

• An invisible class: Any equivalence class representing a
set of lines that intersect at least one occluder.

• An undefined class: An equivalence class that is not yet
found as visible or invisible.

Our algorithm builds a BSP tree in Plücker space, providing
a hierarchical representation of the equivalence classes gen-
erated by the occluders. Each leaf represents one of these
three classes. The algorithm is lazy: The BSP tree is grown
on-demand depending on when and where visibility infor-
mation is needed. The construction only relies on two oper-
ations: Inserting an occluder into the tree and growing the

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > généralisation

• ajoutons un autre triangle et 3 droites dans diverses configurations

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

cells and one of them contains all the lines (i.e. their Plücker
points) stabbing the triangle, while the other cells contain the
lines missing the triangle.

Pellegrini [Pel04] develops a more general approach. He

a

b

c

πa

πb

πc

R3 P5

Figure 3: Left: 2 triangles and 3 lines a, b, c in various

configurations. Right: The arrangement of hyperplanes (il-

lustrated by 6 2D lines) mapped from the 6 triangles edges.

They divide the Plücker space into cells. Filled cells are set

of lines intersecting at least one triangle. πa, πb and πc are

the Plücker points mapped from a, b and c. They are located

in the cells they belong to, according to the triangle(s) they

stab. For example, πb has a consistent orientation with re-

spect to the 6 hyperplanes since b intersects the two trian-

gles. Its relevant cell holds all the lines intersecting the two

triangles.

uses the Plücker space as a framework to provide theoreti-
cal bounds on various problems involving lines. Let S be a
set of several triangles (or convex polygons) and LS be the
lines spanning the triangles edges in S. Each line in LS can
be mapped to Plücker space as a hyperplane. This builds an
arrangement in Plücker space: A decomposition of the space
into cells by a set of hyperplanes. All the points in a same
cell satisfy the following property: They all have the same
sign with respect to its bounding hyperplanes. This is illus-
trated in Figure 3 with 2 triangles. Thus, in Plücker space,
all the lines (i.e. their Plücker points) belonging to the same
cell intersect the same subset of triangles in S. Notice that
this subset can be empty if the lines miss all the triangles in
S.

The decomposition of Plücker space into cells allows to
group lines together according to the subset of triangles they
intersect. This defines an equivalence relation on lines. Each
cell corresponds to an equivalence class (sometimes called
isotopy class [Pel91] or orientation class [CEG∗96]). To sum
up, the Pellegrini approach allows an exact and analytical
representation of all the sets of lines generated by a set of
triangles S, using the set of lines LS.

3.3. Orientation of lines intersecting two polygons

We focus on the set of lines intersecting two convex poly-
gons. We prove the following theorem:

Theorem 1 Let A and B be two convex polygons with n and

m vertices respectively. We define vvset = {vi j, i ∈ [1,n], j ∈
[1,m]} the set of the lines vi j defined by one vertex of A and

one vertex of B. Let l be any line and q a line intersecting A

and B:

side(l,x)≥ 0, ∀x ∈ vvset ⇒ side(l,q)≥ 0,
side(l,x)≤ 0, ∀x ∈ vvset ⇒ side(l,q)≤ 0.

In other words, if all the vertex-to-vertex lines of two poly-
gons have a positive (resp. negative) orientation with respect
to any line l, all the stabbing lines of the two polygons will
have a positive (resp. negative) orientation with respect to l.
This is also illustrated by Figure 5. We refer the reader to the
Appendix at the end of this paper for a detailed proof of the
theorem 1.

Using this theorem, we can determine if the set of lines
stabbing two polygons has a consistent orientation with re-
spect to a given line. The visibilty algorithm presented in the
next section uses this essential result.

It can be proved that the Plücker points of the lines in
vvset are the vertices of the smallest convex polyhedron in
the Plücker space containing the stabbing lines of A and B.
A demonstration can be found in [CAF06, ACFM11], but it
requires advanced knowledge in geometric algebra. For the
understanding and the correctness of this work, the theorem
demonstrated in this paper is sufficient.

4. Algorithm

Since equivalence classes are continuous sets of lines that
hit/miss the same subset of triangles, they represent coher-
ent paths through the scene independently of any viewpoint.
Therefore, two lines belonging to the same equivalence class
are spatially coherent. We use this property to build a Plücker
space partition representing the visibility of an area light
source.

4.1. Overview

We consider a convex area light source L, a triangle T , and
define their occluders O as the triangles intersecting their
convex hull. To represent the light source visibility, we focus
on the sets of lines intersecting L and which either miss all
the occluders in O, or hit at least one occluder in O. Thus,
we define:

• A visible class: Any equivalence class representing a set
of lines that do not intersect any occluders.

• An invisible class: Any equivalence class representing a
set of lines that intersect at least one occluder.

• An undefined class: An equivalence class that is not yet
found as visible or invisible.

Our algorithm builds a BSP tree in Plücker space, providing
a hierarchical representation of the equivalence classes gen-
erated by the occluders. Each leaf represents one of these
three classes. The algorithm is lazy: The BSP tree is grown
on-demand depending on when and where visibility infor-
mation is needed. The construction only relies on two oper-
ations: Inserting an occluder into the tree and growing the

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > généralisation

• la représentation duale des droites supports des arêtes des triangles forme dans

l’espace de Plucker un arrangement d’hyperplans

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

cells and one of them contains all the lines (i.e. their Plücker
points) stabbing the triangle, while the other cells contain the
lines missing the triangle.

Pellegrini [Pel04] develops a more general approach. He

a

b

c

πa

πb

πc

R3 P5

Figure 3: Left: 2 triangles and 3 lines a, b, c in various

configurations. Right: The arrangement of hyperplanes (il-

lustrated by 6 2D lines) mapped from the 6 triangles edges.

They divide the Plücker space into cells. Filled cells are set

of lines intersecting at least one triangle. πa, πb and πc are

the Plücker points mapped from a, b and c. They are located

in the cells they belong to, according to the triangle(s) they

stab. For example, πb has a consistent orientation with re-

spect to the 6 hyperplanes since b intersects the two trian-

gles. Its relevant cell holds all the lines intersecting the two

triangles.

uses the Plücker space as a framework to provide theoreti-
cal bounds on various problems involving lines. Let S be a
set of several triangles (or convex polygons) and LS be the
lines spanning the triangles edges in S. Each line in LS can
be mapped to Plücker space as a hyperplane. This builds an
arrangement in Plücker space: A decomposition of the space
into cells by a set of hyperplanes. All the points in a same
cell satisfy the following property: They all have the same
sign with respect to its bounding hyperplanes. This is illus-
trated in Figure 3 with 2 triangles. Thus, in Plücker space,
all the lines (i.e. their Plücker points) belonging to the same
cell intersect the same subset of triangles in S. Notice that
this subset can be empty if the lines miss all the triangles in
S.

The decomposition of Plücker space into cells allows to
group lines together according to the subset of triangles they
intersect. This defines an equivalence relation on lines. Each
cell corresponds to an equivalence class (sometimes called
isotopy class [Pel91] or orientation class [CEG∗96]). To sum
up, the Pellegrini approach allows an exact and analytical
representation of all the sets of lines generated by a set of
triangles S, using the set of lines LS.

3.3. Orientation of lines intersecting two polygons

We focus on the set of lines intersecting two convex poly-
gons. We prove the following theorem:

Theorem 1 Let A and B be two convex polygons with n and

m vertices respectively. We define vvset = {vi j, i ∈ [1,n], j ∈
[1,m]} the set of the lines vi j defined by one vertex of A and

one vertex of B. Let l be any line and q a line intersecting A

and B:

side(l,x)≥ 0, ∀x ∈ vvset ⇒ side(l,q)≥ 0,
side(l,x)≤ 0, ∀x ∈ vvset ⇒ side(l,q)≤ 0.

In other words, if all the vertex-to-vertex lines of two poly-
gons have a positive (resp. negative) orientation with respect
to any line l, all the stabbing lines of the two polygons will
have a positive (resp. negative) orientation with respect to l.
This is also illustrated by Figure 5. We refer the reader to the
Appendix at the end of this paper for a detailed proof of the
theorem 1.

Using this theorem, we can determine if the set of lines
stabbing two polygons has a consistent orientation with re-
spect to a given line. The visibilty algorithm presented in the
next section uses this essential result.

It can be proved that the Plücker points of the lines in
vvset are the vertices of the smallest convex polyhedron in
the Plücker space containing the stabbing lines of A and B.
A demonstration can be found in [CAF06, ACFM11], but it
requires advanced knowledge in geometric algebra. For the
understanding and the correctness of this work, the theorem
demonstrated in this paper is sufficient.

4. Algorithm

Since equivalence classes are continuous sets of lines that
hit/miss the same subset of triangles, they represent coher-
ent paths through the scene independently of any viewpoint.
Therefore, two lines belonging to the same equivalence class
are spatially coherent. We use this property to build a Plücker
space partition representing the visibility of an area light
source.

4.1. Overview

We consider a convex area light source L, a triangle T , and
define their occluders O as the triangles intersecting their
convex hull. To represent the light source visibility, we focus
on the sets of lines intersecting L and which either miss all
the occluders in O, or hit at least one occluder in O. Thus,
we define:

• A visible class: Any equivalence class representing a set
of lines that do not intersect any occluders.

• An invisible class: Any equivalence class representing a
set of lines that intersect at least one occluder.

• An undefined class: An equivalence class that is not yet
found as visible or invisible.

Our algorithm builds a BSP tree in Plücker space, providing
a hierarchical representation of the equivalence classes gen-
erated by the occluders. Each leaf represents one of these
three classes. The algorithm is lazy: The BSP tree is grown
on-demand depending on when and where visibility infor-
mation is needed. The construction only relies on two oper-
ations: Inserting an occluder into the tree and growing the

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.

Espace de Plucker > généralisation

• cet arrangement induit une partition de l’espace de Plucker

• chaque cellule de cette partition contient des droites qui possèdent les mêmes

orientations vis à vis des droites supports des triangles

Espace de Plucker > généralisation, résumé

• étant donné des triangles

• plonger toutes les droites supports 

des arêtes sous forme d’hyperplans

• cela définit un arrangement d’hyperplans 

dans l’espace de Plucker

• chaque cellule représente une classe  

d’équivalence, regroupant les droites qui  

intersectent le même sous ensemble de triangles

Espace de Plucker > fin de l’histoire (?)

• on dispose donc d’une description générale et analytique de la visibilité !

• ceci étant, quelle est la complexité d’un arrangement de n hyperplans dans un espace

de dimension d ?

• autrement dit, combien de cellules peuvent former n hyperplans ?

Espace de Plucker > fin de l’histoire (?)

• on dispose donc d’une description générale et analytique de la visibilité !

• ceci étant, quelle est la complexité d’un arrangement de n hyperplans dans un espace

de dimension d ?

• autrement dit, combien de cellules peuvent former n hyperplans ?

O(n)d O(n)5 O(n log(n))4

Espace de Plucker > fin de l’histoire (?)

• ça pique un peu…

• soit une scène de 100 triangles, donc 300 hyperplans : plus de 37 milliards…

• algorithmiquement parlant, c’est une complexité calculatoire et mémoire

O(n log(n))4

Espace de Plucker > fin de l’histoire (?)

• ça pique un peu…

• soit une scène de 100 triangles, donc 300 hyperplans : plus de 37 milliards…

• algorithmiquement parlant, c’est une complexité calculatoire et mémoire

• mais, c’est une complexité « au pire »

• positions quelconques des hp versus géométrie ordonnée des scènes 3D

• on n’est peut être pas obligé de tout calculer à la fois

O(n log(n))4

Espace de Plucker > visibilité polygone à polygone

• construction d’un polytope contenant les droites intersectant A et B

Espace de Plucker > visibilité polygone à polygone

• comment prendre en compte un bloqueur O qui nuit à la visibilité de A et B ?

Espace de Plucker > visibilité polygone à polygone

• premier hp issu de la droite support de la première arête du bloqueur

• intersection du polytope par l’hyperplan

Espace de Plucker > visibilité polygone à polygone

Espace de Plucker > visibilité polygone à polygone

• second hp issu de la droite support de la seconde arête du bloqueur

• intersection du polytope par l’hyperplan

Espace de Plucker > visibilité polygone à polygone

Espace de Plucker > visibilité polygone à polygone

• troisième hp issu de la droite support de la troisième arête du bloqueur

• intersection du polytope par l’hyperplan

Espace de Plucker > visibilité polygone à polygone

Espace de Plucker > visibilité polygone à polygone

• le résultat est un complexe de polytopes

• leurs intersections avec la quadrique de Plucker forment les classes d’équivalence

• polytope « rouge » : les droites intersectant A, O, B

Espace de Plucker > visibilité polygone à polygone

• suppression des droites occultées

• on a calculé

Espace de Plucker > visibilité polygone à polygone

• suppression des droites occultées

• on a calculé

Espace de Plucker > en pratique

• ni plus ni moins que des opérations CSG

• mais en 5D…

Deux approches :

• numérique : résolution de système d’équations linéaires

• géométrique / topologique

Espace de Plucker > en pratique

Un polytope se caractérise par

• sa H-représentation (ses hyperplans)

• sa V-représentation (ses sommets)

A partir des relations d’incidence entre la H et V-représentation, on peut calculer le

graphe d’incidence d’un polytope :

exemple en 2D exemple en 5D

Espace de Plucker > en pratique

Faces d’un de nos polytopes et interprétation en 3D

Espace de Plucker > en pratique

On sait ensuite calculer l’intersection de
polytopes par un hyperplan en se basant
uniquement sur la classification initiale de ses
sommets

Avantages :
• plus robuste numériquement
• fonctionne en toute dimension

Espace de Plucker > en pratique

Espace de Plucker > interprétation des k-faces

Espace de Plucker > interprétation des k-faces

Espace de Plucker > interprétation des k-faces

Applications > propagation électromagnétique

Applications > ombre douces analytiques

T-Rex	(26K	triangles)

Time	:	6.5s	
Memory	:	19	MB	

Time	:	7s	
32	samples	

Applications > ombre douces analytiques

Sponza	with	Neptune	(115K	triangles)

Time	:	7s	
Memory	:	16	MB	

Time	:	7s	
32	samples	

Applications > ombre douces analytiques

Conference	(282K	triangles)

Time	:	6s	
Memory	:	20	MB	

Time	:	6s	
32	samples	

Applications > ombre douces analytiques

Soda	Hall	(2147K	triangles)

Time	:	5s	
Memory	:	20	MB	

Time	:	8s	
32	samples	

Applications > ombre douces analytiques

T-Rex

Sponza

Conf.

Soda.

0 30 60 90

38

24

23

82

5

6

7

6.5

Ours RT

512 samples

256 samples

256 samples

256 samples

x 12.6

x 3.3

x 4

x 7.6

Applications > ombre douces analytiques

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

M
em

or
y

O
cc

up
at

io
n

[M
B]

Light Number

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40

Ti
m

e
[s

]

Light Number

Applications > ombre douces analytiques

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
[s

]

Light Area

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

O
cc

up
at

io
n

[M
B]

Light Area

Applications > ombre douces analytiques

Applications > occlusion ambiante analytique

Applications > occlusion ambiante analytique

Applications > occlusion ambiante analytique

